Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Bis(2-aminopyridinium) maleate

Orhan Büyükgüngör ${ }^{\mathbf{a} *}$ and Mustafa Odabaşoğlu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, and
${ }^{\text {b }}$ Department of Chemistry, Ondokuz Mayıs University, TR-55139, Samsun, Turkey
Correspondence e-mail: orhanb@omu.edu.tr

Received 13 December 2002
Accepted 20 January 2003
Online 11 February 2003
Two cyclic eight-membered hydrogen-bonded rings exist in the title compound, $2 \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}{ }^{2-}$, involving the 2-aminopyridinium and maleate ions. The dihedral angle between the two pyridinium rings hydrogen bonded to the maleate ion is $74.80(4)^{\circ}$. The maleate anion lies on a twofold axis and is linked to the pyridinium cations by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The heterocycle is fully protonated, which enables amino-imino tautomerization.

Comment

The present work is part of a structural study of complexes of 2-aminopyridinium systems with hydrogen-bond donors, and we report here the structure of bis(2-aminopyridinium) maleate, (I). A similar series of complexes formed from 2-aminopyridine and carboxylate have been reported recently (Büyükgüngör \& Odabaşoǧlu, 2002; Odabaşoğlu et al., 2003).

A view of (I) is shown in Fig. 1. The complex owes its formation to two hydrogen-bond pairs, one between atoms O1 and O 2 of the maleate ions and hydrogen-bond donors $\mathrm{N} 1-$ H 1 and $\mathrm{N} 2-\mathrm{H} 2 A$, and the other between their symmetryrelated pairs. There are two eight-membered rings in the structure, formed as a result of these $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Furthermore, there is also an intermolecular hydrogen bond in (I) (Table 2).

The average $\mathrm{C}-\mathrm{O}$ distances in carboxylate groups that form intermolecular hydrogen bonds are 1.32 (2) \AA for the
hydroxyl C-OH bond and 1.21 (3) \AA for the carbonyl $\mathrm{C}=\mathrm{O}$. bond (Borthwick, 1980). The value for the carboxylate anion is also reported as $1.25 \AA$ (Borthwick, 1980). The O1-C11 and $\mathrm{O} 2-\mathrm{C} 11$ bond lengths in (I) thus fall into the category of a normal COO^{-}group (Table 1).

The $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angle of pyridines is very sensitive to protonation (Jin, Pan, Xu \& Xu, 2000; Jin et al., 2002). In comparison with 2-amino-6-methylpyridinium neoabietate (Jin, Pan, Liu \& Xu, 2000), the complete protonation of the heterocycle in (I) is indicated by the enlarged $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$ angle $\left[122.69(15)^{\circ}\right]$ and the reduced $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$ angle [117.47 (16) ${ }^{\circ}$]. The 2-aminopyridine-carboxylic acid system has been the subject of theoretical (Inuzuka \& Fujimoto, 1990) and spectroscopic (Inuzuka \& Fujimoto, 1986) amino-imino tautomerization studies. The main features of amino-imino tautomerization (see Scheme 1) are demonstrated in the structure of (I) by the bond lengths and angles of the

Figure 1
A view of the moieties of (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids [symmetry code: (i) $\frac{1}{2}-x$, $\left.\frac{1}{2}-y, z\right]$.

Figure 2
A packing diagram for (I), viewed along the c axis.
heterocycle and the maleate anion, respectively. The present investigation, like our previous work (Büyükgüngör \& Odabaşoğlu, 2002; Odabaşoǧlu et al., 2003), clearly shows that the positive charge in the 2-aminopyridinium ions of (I) is on the amino group.

Experimental

The title compound was prepared by dissolving 2-aminopyridine and maleic acid in a 2:1 molar ratio in water at 373 K . Crystals of (I) were obtained by slow evaporation of the solvent at the room temperature.

Crystal data

$2 \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}{ }^{2-}$
$M_{r}=304.30$
Orthorhombic, Fdd2
$a=21.756$ (5) А
$b=23.531$ (5) \AA
$c=5.6280(11) \AA$
$V=2881.2(11) \AA^{3}$
$Z=8$
$D_{x}=1.403 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens $P 4$ diffractometer
ω scans
1564 measured reflections
873 independent reflections
$h=-27 \rightarrow 5$
$k=-30 \rightarrow 0$

814 reflections with $I>2 \sigma(I)$
1 standard reflection
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=27^{\circ}$
Mo $K \alpha$ radiation
Cell parameters from 161 reflections
$\theta=2.6-12.7^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=153$ (2) K
Rectangular, light yellow
$0.20 \times 0.15 \times 0.10 \mathrm{~mm}$
max

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.072$
$S=1.05$
873 reflections
101 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0451 P)^{2}\right. \\
& +0.5722 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.11 \mathrm{e}^{\circ} \AA^{-3} \\
& \Delta \rho_{\text {min }}=-0.11 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0048 \text { (6) }
\end{aligned}
$$

Although space group $C c$ gave a chemically reasonable and computationally stable refinement, the correct space group was found to be Fdd2. Refinement of the absolute structure parameter was meaningless because of its large s.u. (1.2), and so Friedel-pair reflections were averaged before the final refinement. All H atoms were treated using a riding model, with $\mathrm{C}-\mathrm{H}$ distances of $0.95 \AA$ and $\mathrm{N}-\mathrm{H}$ distances of $0.88 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent).

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1998).

The authors wish to thank Professor Dr D. Fenske for the opportunity to use the diffractometer and computer facilities of the Institut für Anorganische Chemie, Universität Karlsruhe, Germany, and also Dr Anthony Linden, Data Validation Editor, Institute of Organic Chemistry, University of Zurich, Switzerland, for his kind assistance in solving the symmetry problem.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1408). Services for accessing these data are described at the back of the journal.

References

Borthwick, P. W. (1980). Acta Cryst. B36, 628-632.
Büyükgüngör, O. \& Odabaşoğlu, M. (2002). Acta Cryst. C58, o691-o692.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1998). WinGX. University of Glasgow, Scotland.
Inuzuka, K. \& Fujimoto, A. (1986). Spectrochim. Acta A, 42, 929-937.
Inuzuka, K. \& Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 971-975.
Jin, Z. M., Pan, Y. J., Hu, L. M. \& Zou, J. W. (2002). J. Mol. Struct. 609, 83-87.
Jin, Z. M., Pan, Y. J., Liu, J. G. \& Xu, D. J. (2000). J. Chem. Crystallogr. 30, 195198.

Jin, Z. M., Pan, Y. J., Xu, D. J. \& Xu, Y. Z. (2000). Acta Cryst. C56, e69-e70.
Odabaşoğlu, M., Büyükgüngör, O., Turgut, G., Karadağ, A., Bulak, E. \& Lönneçke, P. (2003). J. Mol. Struct. In the press.
Sheldrick, G. M. (1990). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1991). XSCANS User's Manual. Version 2.10b. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

